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Phase transitions in simple fluids: An application of a one-phase
entropic criterion to Lennard-Jones and point Yukawa fluids
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A recently proposed entropic criterion [P.V. Giaquinta and G. Guinta, Physica A 187, 145
(1992)] for the determination of phase transitions in simple fluids is applied to two-fluid models,
a purely repulsive point Yukawa fluid, and a 6-12 Lennard-Jones system. Both the gas-liquid and
the freezing transitions are investigated by means of integral equation theory, and assessed with

simulation data available in the literature.

Our results indicate that the entropic criterion is a

reasonable tool for predicting the freezing transition at low temperatures, in particular for purely
repulsive potentials. Comparison with other melting rules is less favorable when there is an important
attractive component in the interaction. On the other hand, the determination of the gas-liquid
critical point and the liquid side of the gas-liquid coexistence curve is merely qualitative. Our results,
however, show the existence of a correlation between the gas-liquid transition and the location of
one of the inflection points of the density-dependent excess residual entropy.

PACS number(s): 61.20.Gy, 64.70.—p

I. INTRODUCTION

The use of integral equation techniques for the deter-
mination of phase diagrams in simple fluids has been
widely explored [1-3]. In particular, a new suggestive
criterion that enables the determination of the melting
line with one-phase thermodynamic and structural prop-
erties as input has been recently proposed by Giaquinta
and Giunta [4]. They made a careful analysis of the den-
sity dependence of the excess entropy s°* and the pair
entropy sz (i.e., the contribution of spatial correlations
between pairs of particles to the excess entropy) for the
hard-sphere fluid, and concluded that the residual en-
tropy As(p) = s°* — s reflects all the borders between
structural and dynamical regimes present in the fluid,
through the zeros of the function itself and its derivatives
[4]. This somewhat empirical criterion was successfully
tested in the prediction of the melting line for the hard-
sphere fluid [4], the Lennard-Jones (LJ) fluid [5], and in
a very recent work for a system of rigid Cgo molecules
2]

In this paper we intend to explore this one-phase cri-
terion for a system with attractive interactions, the 6-
12 LJ fluid, along the full density range, analyzing not
only the melting transition, but also the correlations be-
tween inflection points and the liquid-vapor transition.
We also consider a purely repulsive soft potential, the
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point Yukawa, for which the location of the freezing tran-
sition has been the focus of recent work [6]. This in-
teraction, though simple, has been successfully applied
to model colloidal suspensions [7], which are known to
undergo transitions between dense disordered and dense
ordered phases [8].

Spatial correlations and thermodynamics have been
evaluated by means of the reference hypernetted chain
(RHNC) equation [9], a theoretical approach that has
proved extremely accurate for simple fluids. We have
solved the RHNC equation for a 6-12 LJ system for which

the interaction reads
e (GO C P

with €,0 being the Lennard-Jones parameters and § =
1/kpT the inverse temperature; and also for a repulsive
point Yukawa fluid, in which one has

Bur(r) = 2 Y exp |- . 2

Bury(r) =

In this case it is usual [6] to introduce the reduced pa-
rameters t = 1/Bey and A = a/oy, with a the average
nearest-neighbor distance, i.e., p = 1/a3, p being the av-
erage number density. Thus, in units of length a, the
interaction reads

Buy (r) = %7-‘ exp(—Ar). (3)

For these interaction potentials, the Ornstein-Zernike
(OZ) equation
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h(r) = e(r) + p / o(r13)h(rs2)drs (@)

has been solved using standard numerical techniques [1].
In the expression above h(r) is the total correlation func-
tion and ¢(r) is the direct correlation function. This re-
lation is coupled with the RHNC closure, which reads

h(r) = exp[—PBu(r) + h(r) —c(r) + bo(r)] = 1.  (5)

Here, the reference system bridge function be(r) is com-
puted for a hard-sphere fluid using the Verlet-Weis-
Henderson-Grundke parametrization [10,11], and the
hard-sphere diameter is determined by requiring the min-
imization of the free energy defined in Ref. [9]. All the
thermodynamic quantities can be evaluated using the
RHNC thermodynamics [see Egs. (11) and (22)-(23) in
Ref. [9]]. With these, we can compute the excess entropy
per particle (in units of Boltzmann’s constant kg)

sex — ﬁ(uex _ aex) (6)

from the excess internal energy per particle, ©°*, and the
excess free energy per particle, a**. The two-particle con-
figurational contribution to the excess entropy is given by
[4,12]

s2= =30 [ o) ing(r)dr + 3p [lo(r) - 1lar (7

with g(r) the pair distribution function. Hence we can
analyze in a straightforward way the density dependence
of As(p) and study its zeros, extrema, and inflection
points. Numerically, it will not be feasible to go beyond
the second derivative, since truncation errors along the
numerical solution of the integral equation are enhanced
by the differentiation.
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II. RESULTS

Our calculations for the LJ system are collected in Ta-
bles I 111, and Figs. 1 and 2. In Table I we compare our
results for Su®*, the compressibility factor BP/p, s°*, and
82, with those of an extensive Monte Carlo (MC) calcu-
lation by Giaquinta et al. [5]. We observe that, despite
the accuracy of the RHNC thermodynamics, the zeros of
the residual entropy As(p) are somewhat shifted toward
higher densities. The largest source of the error in the
RHNC approximation stems from the evaluation of s;, a
quantity which is affected by large relative errors, even at
T* = 1.15, while the remaining properties are accurately
described by the RHNC. An alternative integral equa-
tion approach, the self-consistent hybrid mean spherical
approximation (HMSA), previously investigated by Cac-
camo, Giaquinta, and Giunta [3], yields somewhat better
results, in particular at high temperatures (see Table III);
nonetheless, the RHNC approximation has the advantage
that it does not require thermodynamic integration, since
this approach is endowed with explicit expressions to de-
termine the thermodynamic potentials directly from the
correlation functions.

In previous works [3,4], the existence of a pronounced
correlation between the zeros of As(p) and the freez-
ing transition was unequivocally established. It was also
suggested that the extrema in dAs(p)/dp [i.e., zeros of
d?As(p)/dp? or inflection points in As(p)] are associated
with the gas-liquid transition. Therefore, we have here
investigated the behavior of dAs(p)/dp for a wide range
of temperatures and densities, as can be seen in Fig. 1.
Due to the presence of the spinodal line, at the lowest T
no RHNC solution is available for some densities [1]. In
Fig. 1, we first observe the presence of two extrema on
the high density side, with one of them disappearing for
T* > T* (and this T* = 1.45 is somewhat off the sim-
ulated critical temperature T =~ 1.30 [13], or the value
extrapolated from the RHNC phase diagram, T* ~ 1.31
[1]). We notice that the locus of the maxima in dAs/dp

TABLE I. Thermodynamics of the 6-12 LJ fluid close to the liquid-solid transition. Theory vs

MD results from Ref. [3].

BP/p Bu™ 8% 82 As
T p* MD RHNC MD RHNC MD RHNC MD RHNC MD RHNC
0.84 0.441 0.449 -8.032 -8.028 -3.441 -3.514 -3.378 -3.306 -0.063 -0.208
0.85 0.692 0.705 -8.112 -8.109 -3.516 -3.590 -3.492 -3.406 -0.024 -0.184
0.86 0.952 0.977 -8.179 -8.188 -3.581 -3.667 -3.599 -3.509 0.018 -0.158
0.75 0.87 1.244 1.268 -8.256 -8.265 -3.659 -3.746 -3.711 -3.617 0.052 -0.129
0.88 1.579 -8.339 -3.284 -3.727 -0.097
0.89 1.906 -8.412 -3.905 -3.842 -0.063
0.90 2.252 -8.481 -3.986 -3.962 -0.024
0.91 2.617 -8.547 -4.068 -4.085 0.017
0.93 5.022 5.041 -5.205 -5.202 -3.671 -3.671 -3.566 -3.494 -0.105 -0.177
0.94 5.364 5371 -5.229 -5.228 -3.739 -3.742 -3.668 -3.592 -0.071 -0.150
0.95 5.711 5.716 -5.251 -5.250 -3.810 -3.812 -3.771 -3.692 -0.039 -0.120
1.15 096 6.069 6.066 -5.272 -5.273 -3.882 -3.886 -3.882 -3.799 0.000 -0.087
0.97 6.450 6.444 -5.289 -5.290 -3.953 -3.957 -3.993 -3.905 0.040 -0.052
0.98 6.835 -5.305 -4.035 -4.015 -0.020
0.99 7.240 -5.318 -4.111 -4.129 0.018
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TABLE II. Comparison of the locus of maxima in dAs/dp
(denoted by GG-RHNC) and predictions of the liquid side
of the coexistence curve from Gibbs ensemble Monte Carlo
(GE-MC), van der Waals theory (vW), RHNC chemical equi-
librium data (RHNC), and Guggenheim’s fit to experimental
results (Gg). The data are scaled with the critical point lo-
cation, i.e., p. = p'/pc and T! = T'/T.. GE-MC data taken

from Ref. [13]. RHNC data taken from Ref. [1]. Gg data
taken from Ref. [14].
P~
T GG-RHNC GE-MC vW RHNC Gg

0.992 1.413 1.452 1.177 1.350
0.954 1.484 1.629 1.442 1.594 1.660
0.763 1.611 1.955 1.727 1.955 1.960
0.878 1.788 2.252 2.014 2.258 2.260
0.687 1.897 2.429 2.164 2.439 2.423
0.573 2.645 2.354 2.648 2.639

is apparently correlated with the liquid side of the gas-
liquid transition (it is not possible to say whether it is
the spinodal or the binodal line which is correlated), as
can be seen in Fig. 2. The prediction of the location
of the two-phase boundary is, however, very poor (com-
pare the double-dot-dashed curve with the solid circles
from MC simulation). This is seen more explicitly in
Table II. Here we compare the location of the maxima
in dAs/dp (denoted by GG-RHNC) with results from
van der Waals theory (vW), Gibbs ensemble MC data
from Ref. [13] (GE-MC), results from the RHNC using
plain chemical equilibrium conditions [1], and Guggen-
heim’s fit to experimental data [14]. From Fig. 2 we al-
ready knew that the critical temperature estimate from
the Giaquinta-Giunta rule is quite off both simulated and
RHNC predictions. From Table III we find now that the
liquid side of the coexistence curve scaled with the crit-
ical T, and p. is also incorrectly predicted, in particular
at low temperatures. Accordingly, one cannot expect to
obtain reliable estimates of the gas-liquid transition from
the entropic criterion, but just a mere indication that the
transition is about to take place.

For the high density minimum in dAs/dp, we observe
that for temperatures approaching from above the pseu-
docritical T} ', it converges toward a value p.o® ~ 0.6.
Giaquinta and Giunta [4] found for the hard-sphere fluid
an inflection point in As(p) at po® ~ 0.5, which they
associated with a transition to a dense fluid regime,

TABLE III. Comparison of the location of the melting
line prediction according the Giaquinta-Giunta criterion using
RHNC, HMSA, and MD input (GG-RHNC, GG-HMSA, and
GG-MD, respectively), the Hansen-Verlet rule with RHNC in-
put (HV-RHNC), and MC simulation. MC data taken from
Ref. [15]. GG-HMSA data taken from Ref. [3]. GG-MD data
taken from Ref. [5].

*

p
T* MC GG-RHNC GG-HMSA GG-MD HV-RHNC
0.75 0.875 0.906 0.878 0.856 0.876
1.15 0.936 0.985 0.950 0.960 0.944
1.35 0.964 1.016 0.973

20 T T T T

das/dp

FIG. 1. dAs/dp vs p for the Lennard-Jones fluid. Curves
are labeled according the temperature T* in the follow-
ing pairs (A4,0.75), (B,0.90), (C,1.00), (D,1.15), (E,1.25),
(F,1.30), (G,1.32), (H,1.39), (I,1.42), (J,1.45), and (K ,2.0).

whose boundaries are defined by the percolation thresh-
old. For higher densities the accessible volume in the
system breaks into isolated cavities. Since the LJ fluid
is more “compressible,” it is understandable to find such
a transition at a more dense state. For temperatures
below the pseudocritical Tc*’, the first order gas-liquid
transition interferes with the structural transition and
this is shifted toward higher densities, the trend indicat-
ing that both inflection points tend to merge. This latter
assumption could not be proved since, as can be seen in
Fig. 2, at the triple point 7*, the maximum lies beyond
the nonsolution line of the equation.

Focusing now on the solid-liquid transition, we ob-
serve in Table IIT that the Giaquinta-Giunta criterion
with RHNC input (GG-RHNC) leads to a freezing line
shifted toward higher densities by less than 5%. This
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FIG. 2. Phase diagram of the LJ fluid. Filled circles cor-
respond to MC results from Refs. [13] and [15]. The dashed
line is the RHNC prediction of the freezing transition. The
dash-dotted line corresponds to the location of the last mini-
mum of dAs/dp (estimate of the vapor-liquid transition), and
the double-dot-dashed line to the locus of the last maximum
(estimate of the percolation threshold).
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FIG. 3. Residual entropy As vs A, for a repulsive point
Yukawa fluid computed in the RHNC approximation.

deviation increases at higher T, probably because the
transition shows up at larger p values where the inac-
curacies of the RHNC are enhanced. Use of HMSA or
molecular dynamics to provide structural and thermody-
namic input improves the results somewhat. Other phe-
nomenological criteria, like the Hansen-Verlet rule (even
with RHNC-calculated structure factors, which we here
denote as HV-RHNC) or Lindemann’s rule (L = 0.14),
are in reasonable agreement with MC simulations [15].
In particular, HV-RHNC results deviate by less than 1%
from the simulation values. On the whole, the Hansen-
Verlet rule seems more ‘appropriate for the LJ potential,
and like the Giaquinta-Giunta criterion, it only requires
liquid phase data input.

Concerning the point Yukawa system, we have studied
the four temperatures for which Meijer and Frenkel [16]
determined the location of the melting transition by MC
simulations. Notice that, in this case, the fluid phase can
freeze into a body-centered cubic (bcc) or a face-centered
cubic (fcc) crystal. Again, RHNC thermodynamics is ex-
tremely accurate as compared with MC simulations [16].

In Fig. 3 we show the evolution of As(A) vs A, and
our results are explicitly compared in Table IV and Fig.
4 with those of Meijer and Frenkel, who found a bcc
(fcc) stable solid structure for the two high (low) tem-
peratures. According to Dupont et al. [17], the fluid-fcc
transition at A = 5.33 corresponds to a metastable fcc
crystal whereas for the low-temperature isotherm, the
bece-fee-fluid triple point is located at A = 6.75. We see

TABLE IV. Equilibrium density along the liquid-solid co-
existence line of the point Yukawa fluid. MC results from
Ref. [16] vs Lindemann’s rule with MC input (MC-L), Gi-
aquinta-Giunta criterion with RHNC input (GG-RHNC), and
the Hansen-Verlet rule with RHNC input (HV-RHNC). MC-L
data taken from Ref. [18].

A
1074 ¢ MC MC-L GG-RHNC  HV-RHNC
14 2.94(3) 2.99 2.56 3.13
6.3 3.85(4) 3.86 3.55 4.05
1.7 5.33(5) 5.51 5.10 5.53
0.43 6.77(4) 7.00 6.64 7.01

FIG. 4. Liquid-solid coexistence line for the repulsive point
Yukawa fluid. RHNC theory vs computer simulation from
Ref. [16].

that GG-RHNC results are considerably more accurate
than other empirical rules at low temperature, but again
deviations increase at high temperature (low ), i.e., high
densities). The location of the melting transition using
Lindemann’s rule (L = 0.19) has also been included in
Table III. As shown by Stevens and Robbins [18], this
Lindemann’s ratio is nearly the same for both crystal
structures in infinite systems. It is seen that GG-RHNC
gives better results near the triple point. On the other
hand, the evaluation of the peak height from simulation
in the liquid structure factor is not accurate enough to
determine a precise melting temperature for the Yukawa
system [18]. If again one uses RHNC input combined
with the Hansen-Verlet rule, the results are not so im-
pressive as in the LJ case. One could speculate that the
Giaquinta-Giunta criterion might be more suitable for
purely repulsive potentials. However, one must bear in
mind that low-temperature repulsive Yukawa fluids look
increasingly like hard-sphere systems, and this could be
underlying the better agreement found for those systems.

Now a question remains to be addressed: the number
of extrema in dAs/dp. In Fig. 5 we have plotted this
quantity vs p for the lowest t value. Contrary to what was

T L} T T
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A 1 i 1 i 1 1
0.00 0.50 1.00 1.50 2.00 2.50

103pc®

FIG. 5. dAs/dp vs p for the repulsive Yukawa fluid at
t = 4.3 x 107° computed in the RHNC approximation.



5168 LOMBA, LOPEZ-MARTIN, CATALDO, AND TEJERO 49

observed for the low-7"* LJ fluid (see Fig. 1) here only one
minimum shows up (as in the hard-sphere case [4] or in
the LJ case above T?*'). This minimum can probably be
associated with the dense fluid regime transition related
to the percolation threshold, as put forward by Giaquinta
and Giunta in the hard-sphere fluid case [4]. The absence
of the high density maxima found in the LJ fluid is due
to the purely repulsive nature of the interaction and the
consequent lack of spinodal behavior.

We can conclude that the use of the one-phase entropic
criterion appears to be reliable for pure repulsive poten-
tials at low temperatures (hard-sphere-like conditions),
but its accuracy is exceeded by the Hansen-Verlet rule in
systems with attractive interactions. In this latter case,
the Giaquinta-Giunta criterion also gives evidence of the
gas-liquid transition, but its location is inconclusive and

the criterion cannot match more traditional procedures,
such as the simple use of thermodynamic equilibrium
conditions with integral equation input. It remains to
be assessed what portion of this inaccuracy can be as-
cribed to the integral equation itself. As to the freezing
transition, we know that most discrepancies found in this
work are due to the inaccuracy of the RHNC theory in
the calculation of s, [5].
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